
NOVEMBER 1969 TECHNICAL NOTES 2165

would be expected to be less than for a graphite model since
the pyrolysis vapors block a portion of the incident convective
heating and since the combustion reaction of the vapors with
the air in the boundary layer utilizes oxygen that would other-
wise diffuse to the surface. Adjusting the surface-recession
velocity to account for the "inert environment" contribution
(i.e., subtracting the amounts due to shrinkage and due to
oxidation by pyrolysis gases as determined from the surface-
recession velocity measured in an inert environment), the
velocities are below the level predicted for graphite using
Eq. (3)."
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Nozzle Boundary-Layer
Displacement Thickness

at Mach Numbers 30 to 70
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Nomenclature
(A/A*)efi = ratio of effective nozzle-to-throat cross-sectional

area (mass flow considerations)
(A/A*)freo = ratio of geometric nozzle-to-throat cross-sectional

area
d* = nozzle throat diameter
Afoo = freestream Mach number
ptti = reservoir pressure
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pm = freestream static pressure
Rm,x = freestream Reynolds number based on axial distance

from nozzle cone apex
Tt,i = reservoir temperature
T'oo = freestream static temperature
x = axial distance from nozzle cone apex
5* = boundary-layer displacement thickness
Too = freestream ratio of specific heats
0 = nozzle-divergence half-angle

Introduction

OVER the past decade, the empirical relations of Refs.
1 and 2 for predicting hypersonic nozzle boundary-layer

displacement thickness in air have received considerable
usage. More recently, a similar study in nitrogen (Ref. 3)
showed that extrapolation of the empirical relations of Refs.
1 and 2 to Mach numbers greater than those from which
they were obtained resulted in overestimation of the nozzle
displacement thickness. An empirical relation employing
the same parameters used in Refs. 1 and 2 was derived by
Whitfield and presented by Edenfield in Ref. 3. This rela-
tion was obtained from higher Mach number data so as to
more accurately predict hypersonic nozzle displacement
thickness for Mach numbers to approximately 20. The
present study provides preliminary nozzle displacement
thickness results in helium at Mach numbers much greater
than those of the aforementioned hypersonic studies. These
results, obtained in the Langley hotshot tunnel, include the
effects of wide ranges of reservoir pressure, reservoir tem-
perature, and geometric area ratio. An empirical relation
for predicting nozzle displacement thickness over the present
range of Mach numbers (30 to 70) is presented.

Apparatus and Tests
A description of the Langley hotshot tunnel is presented

in Ref. 4. As mentioned in Ref. 4, this facility employs a
10° total-divergence angle conical nozzle. The present
helium results, which represent part of a recent calibration
study, were obtained for a reservoir pressure range of 3000
to 23,000 psi and reservoir temperature range of 1500° to
11,000°R. These reservoir conditions, in conjunction with
variation in nozzle-throat diameter, resulted in Mach numbers
of 30 to 70 and Reynolds numbers of 4 X 105 to 5 X 106/ft.

Results and Discussion

Pitot pressure surveys in the nozzle test section showed,
in general, that the pitot pressure was essentially constant
across the in viscid core. A value of the effective-area ratio
(A/A*)eff corresponding to the mean of the measured pitot
pressures across the core, was determined from mass flow
considerations.5 Assuming the displacement thickness at
the nozzle throat to be zero, the nozzle displacement thick-
ness was obtained from the nondimensional expression

d*/x = tan0 - (d*/2x)[(A/A*)eff]1/2 (1)

Figure 1 shows the effect of reservoir pressure on nozzle
displacement thickness for a given geometric area ratio of
2.03 X 104 (d* = 0.150 in. and x = 122 in.) and reservoir
temperature of approximately 3800°R. The nozzle dis-
placement thickness is observed to decrease approximately
27% [A(5*/X) = —0.013] as the reservoir pressure increases
nearly eightfold from 3000 to 23,000 psi. For this change in
pt,i, there was an accompanying increase in Mm from 41 to
50 and in Rm,x from 4.3 X 106 to 2.25 X 107. As shown in
Fig. 1, the empirical relations of Refs. 1 and 2, in terms of
Moo and Rm>x, predicted values of d*/x approximately twice
those of the present data and Ref. 1 failed to predict the trend
of decreasing d*/x with increasing pt,i. The empirical rela-
tion derived by Whitfield and presented by Edenfield in Ref.
3 underestimated the present data by approximately i, but
predicted the trend accurately. For the case of hypersonic
flow over a flat plate, the displacement thickness in air is
about f that in helium for the same value of Mach number
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Fig. 1 Variation of nozzle boundary-layer displacement
thickness with reservoir pressure. Tt,i « 3800 °R, d* =

0.150 in., x = 122 in.

and Reynolds number.6 This air-helium simulation factor
of -§- is surprisingly close to the ratio of -f observed between
the prediction of Whitfield and the present data.

Since thd relation of Whitfield predicted the trend of the
present results, it was decided to modify the constant of this
relation to bring the prediction into agreement with the
present data. To account for the difference in yro between
the present study and that of Whitfield, a linear variation in
the constant as a function of ym was assumed, resulting in the
expression

d*/x = (0.435 TO, - 0.389) Mm
l'*/(Ra>,x)11* (2)

As shown in Fig. 1, Eq. (2) satisfactorily predicts d*/x for
the entire range of pt,\] discretion should be used, however,
in the application of Eq. (2) at conditions other than those of
Whitfield for air or nitrogen and those of the present helium
study.

The effect of reservoir temperature on nozzle displacement
thickness is shown in Fig. 2 for (A/A*)geo = 2.03 X IO4 and
Pt.i « 9200 psi. The nozzle displacement thickness is ob-
served to increase approximately 45% [A(5*/z) = 0.015] as
the reservoir temperature increases nearly sevenfold from
1500° to 11,000°R. For this increase in Ttti, there was an
accompanying decrease in Mm from 51 to 41 and in R«>,x from
2.7 X IO7 to 4.1 X IO6. Again, the empirical relations of
Refs. 1 and 2 overestimated d*/x by a factor of approximately
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Fig. 2 Variation of nozzle boundary-layer displacement
thickness with reservoir temperature. Pt,i «9200 psi, d*

= 0.150 in., x = 122 in.
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Fig. 3 Variation of nozzle boundary-layer displacement
thickness with geometric area ratio.

2 and the relation of Whitfield presented by Edenfield in
Ref. 3 underestimates the present data by approximately -J.
Equation (2) is observed to yield a good prediction of d*/x
for the present Tt,i range.

Figure 3 presents the variation of nozzle displacement
thickness with geometric area ratio where the variation in
(A/A*)geo represents nozzle-throat diameters from 0.075 to
0.375 in. and axial stations from 105 to 130 in. The data
were obtained for reservoir temperatures of 2400° to 2800°R,
and for (A/A*)geo < 3 X IO4, pt,i » 11,500 psi, whereas for
(A/A*)geo > 3 X IO4, pt,i « 15,000 to 17,500 psi. The re-
sults presented in Fig. 3 represent a Mm range of 30 to 70
and ft*,,* range of 1.6 X IO7 to 4.7 X IO7. The displacement
thickness is observed to increase over 100% as (A/A*)geo in-
creases from 2.8 X IO3 to 8.1 X IO4. Equation (2) is ob-
served to predict values of 5*/# to within ±10% over the
Moo range 30 to 70.

A real-helium expression for nozzle displacement thickness
in terms of the nozzle geometric parameters, reservoir condi-
tions, and freestream Mach number may be derived from
Eq. (2). Assuming ideal-helium behavior in the freestream
and employing the viscosity relation of Ref. 7, Eq. (2) may
be expressed as

where <70 is a constant. Now p<» and Tm can both be related
to pt,i and Tt,i for real helium by use of the equations in the
Appendix of Ref. 5. The required ideal helium expressions
in terms of M«, are presented in Ref. 8. The final expression
is

'--ftRx L (4)

where the real-helium correction factors A and B are given by

,0.7901 2.4311 X IO1'
A = I + pt,i

£> — 1 +

X\
J

/ 1.4538 _ 1.3801 X 103\
Pt.l I yr^i.3640 J^ ^.8233 J

and pt.i is in atm, Tt,i in °K, x in ft, and d = 1.1346 X 10~3.
For ideal helium, A = B = 1.
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Introduction

ONE of the performance indices used in the classical design
of single-input and single-output linear time-invariant

systems is the integral of exponentially time-weighted squared
error. This type of performance indices heavily penalizes
long-duration errors and hence tends to give designs that yield
well-damped responses. The use of exponentially time-
weighted performance indices has been in later years revived
by Kalman et al.,1 Tyler,2 and Sage3 in the design of optimal
linear regulators. The solution of this optimal linear regula-
tor problem for finite terminal time is straightforward2-3 and
differs only slightly from that of the conventional problem.
The solution for this particular problem for infinite terminal
time, however, is not as trivial and is not available in litera-
ture. It is the intent of this Note to present a solution for the
linear regulator problem optimal for exponentially time-
weighted quadratic performance indices. The method of solu-
tion utilizes the concept of cost equivalence, to be defined in
the next section, in conjunction with the theory of optimal
linear regulator.

Concept of Cost Equivalence

For the sake of convenience, a linear time-invariant asymp-
totically stable system y = Fy and its associated quadratic
cost functional

J =- f *Jo y'Pydt
will be denoted by [F,P]. The representation [Fi,Pi] is
said to be cost-equivalent to [F^Pz] if F± and F<z are stability
matrices, PI and P<^ are nonnegative symmetric matrices and
Ji = /2. Based on this notation and definition, the following
result can be deduced immediately without proof.

Lemma: [F,emP] is cost equivalent to [F + X7,P] for
any A, if both representations possess the same initial condi-
tions, and the equivalence is one-to-one correspondent.
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It should be emphasized that, although the two representa-
tions are cost-equivalent, they are not equivalent in the sense
of Lyapunov,4 and their trajectories are related by the non-
singular transformation e^I. Since the optimal linear regula-
tor problem is concerned primarily with the minimization of
the cost of a system rather than the shape of the trajectory of
the system, the concept of cost equivalence will be useful in
the development of the main result of the Note.

Main Result

Consider a linear time-invariant controllable system

x = Ax + Bu, x(Q) = XQ (I)
and a quadratic cost functional

= f °
J o

2fft (x'Qx + u'Ru)dt (2)

where A, B, Q, and R are constant matrices of compatible di-
mensions and appropriate definiteness, and a is an arbitrary
positive constant. The problem of interest is to find an
optimal control law such that (2) is minimized subject to (1).
Because the integrand of (2) is unbounded when the terminal
time approaches infinity, the method of derivation of the
conventional optimal linear regulator cannot be directly em-
ployed without some prior mathematical modifications.
With the use of the concept of cost equivalence, it is possible
to state and prove the following result.

Theorem: The optimal control law which minimizes (2)
subject to (1) is given by

u* = -R~lB'Sx (3)

where the symmetric matrix S is the unique positive definite
solution of the algebraic matrix Riccati equation

A'S + SA + 2<rS - SBR-WS + Q = 0 (4)

Moreover, the real parts of all the eigenvalues of the resulting
closed-loop system (A — BR^B'S) are less than —a.

Proof: It is well known that if (A,B) is a controllable
pair, (A + &I,B) is also controllable for any a. From a re-
sult by Wonham,5 there always exists a feedback control law
of the form

u = —Kx (5)

such that (A + <rl — BK) is a stability matrix, that is, the
real parts of all the eigenvalues of (A — BK) are less than
-o-. Applying (5) to (1) and (2) gives [A - BK,e2<rt(Q +
K'RK)], which, in view of the previous lemma, is equivalent
to [A + al - BK,Q + K'RK] in which

z = (A +er 7 - BK)z, z(0) = XQ

J = f °° *'(J o
K'RK)zdt

(6)

(7)

Using now the conventional theory of optimal linear regula-
tor, the control law that minimizes (7) subject to (6) is given
by

= -R~lB'Sz (8)

where the symmetric S is given by (4). Furthermore, the
matrix (A + <rl — BR^B'S) is asymptotically stable, and,
consequently, the real parts of all the eigenvalues of the
closed-loop system are less than — cr.

It should be noted that the optimal control law of (8) is a
linear feedback of the vector z instead of the state vector x.
To complete the proof of the theorem, it is required to show
that both (3) and (8) result in identical costs. Applying (3)
to (1) and (2) leads to [A - BR-lBfS,e2<rt(Q + SBR~1B'S)]
which, with the use of the previous lemma, is equivalent to
[A + al - BR-iB'S,Q + SBR-WS]. Indeed, the latter
is the optimum representation of (6) and (7), and hence (3) is
the optimal control law minimizing (2) subject to (1).


